Webinaire CeRVIM: William Bonilla, le 2 décembre 2022

Webinaire CeRVIM : Introduction à la segmentation sémantique (par Intelligence Artificielle) sur MATLAB

William Bonilla
1. Laboratoire LVSN
Dép. de génie électrique et de génie informatique, U. Laval
2. Stagiaire en test, Tesla

Vendredi, le 2 décembre 2022, 11h00

Résumé
L’intelligence artificielle est un outil de plus en plus accessible qui est très prisé aujourd’hui. Les chercheurs ont donc plus de choix lorsque vient de le temps de choisir une plateforme pour développer leurs algorithmes d’intelligence artificielle.  Récemment, MATLAB a réussi à produire une solution facile d’utilisation qui permet de développer des algorithmes d’intelligence artificielle. La présentation portera sur toutes les étapes pour la réalisation d’un algorithme d’intelligence artificielle capable d’effectuer la segmentation sémantique sur MATLAB.
Le code sera partagé suite à la présentation.

La présentation sera donnée en français et les diapos seront en français.

Pour obtenir le lien d’accès internet pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Séminaire CeRVIM : Sy Nguyen, 18 novembre 2022

Séminaire CeRVIM : A Hybrid Approach for the Motion Control of Kinematically Redundant Hybrid Parallel Robots

Sy Nguyen
Laboratoire de robotique
Dép. de génie mécanique, Université Laval

Vendredi, le 18 novembre 2022, 12h
Local PLT-3370

Résumé
Classical methods for the motion control of robots are based on the dynamic model of the robot. The dynamics and the errors can then be examined either in the joint coordinates or in the task coordinates. Each of these two approaches has advantages and drawbacks, and this results in two versions of several control techniques such as PD+Gravity Compensation or Computed-Torque. The hybrid method that combines both approaches to control Kinematically Redundant Hybrid Parallel Robots is introduced in this presentation. In short, the two approaches are applied to different parts of the robot and the control signal is then determined based on their combination. In addition to improving the position control performance, this method reduces the modeling process. The robot is divided into two main components and each component is modeled separately. Furthermore, the position and orientation of the robot are considered in the Cartesian space, which is more obvious and easier to work with. Several demo videos are shown to demonstrate the performance of this control method. Extended works for force-related control are discussed.

La présentation sera donnée en anglais et les diapos seront en anglais.

Séminaire IID : Prof. Stéphane Doncieux, 14 septembre 2022

Séminaire IID : Apprentissage ouvert en robotique

Stéphane Doncieux, directeur adjoint
ISIR (Institut des systèmes intelligents et de la robotique)
Sorbonne Université, CNRS, Paris

Le mercredi 14 septembre 2022, 14h30-15h30
Salle COP-1168 (Centre d’optique-photonique-laser, Pavillon Vachon)

Résumé

Les robots actuels peuvent accomplir des tâches complexes avec une grande précision, mais pour cela, ils doivent rester dans un environnement contrôlé. Faire face à la variabilité d’un environnement non contrôlé reste un défi. L’apprentissage machine devrait pouvoir donner aux robots les capacités d’adaptation requises, mais la robotique dispose de caractéristiques qui en font un domaine d’application particulièrement exigeant pour les méthodes d’apprentissage. Rendre les robots adaptatifs nécessite de plus de s’intéresser à des apprentissages « ouverts ». Nous positionnerons cette notion par rapport au cadre de l’apprentissage par renforcement et nous présenterons les résultats obtenus dans l’équipe sur les questions que posent un tel apprentissage, que ce soit pour acquérir des représentations d’espaces d’état ou pour explorer dans le cas de récompenses rares. Les applications iront, selon les cas, de problèmes jouets en simulation à la saisie d’objets sur robots réels.

Biographie

Stéphane Doncieux est professeur d’informatique à l’ISIR (Institut des systèmes intelligents et de la robotique), Sorbonne Université, CNRS, Paris.
Depuis janvier 2019, il est directeur adjoint de l’ISIR, un laboratoire de robotique multidisciplinaire qui regroupe des chercheurs en mécatronique, en informatique, en traitement du signal et en neurosciences. Il a été coordinateur du projet DREAM FET H2020 de 2015 à 2018 (https://dream.isir.upmc.fr/). Ses recherches portent sur la robotique cognitive et en particulier sur l’apprentissage et l’adaptation avec une approche évolutionniste et développementale.

La présentation sera donnée en français et les diapos seront en anglais.

Pour plus d’information, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Webinaire CeRVIM : Raoul de Charette, 14 juin 2022

Webinaire CeRVIM : Going beyond 3D to estimate the scene geometry and semantics

Raoul de Charette
Scientifique de recherche, INRIA Paris

Webinaire CeRVIM, co-modal
14 juin 2022, 14h
Lieu (présentiel) : PLT-1120 en personne
Zoom (virtuelle) : https://ulaval.zoom.us/j/64359268203?pwd=U0lzaGFvNWJTNW1zWDFzbitMbzZCZz09

Résumé
Estimating scene geometry and semantics is a prerequisite for visual systems to interact with our physical 3D world. Because they are largely intertwined, these two cues are better estimated jointly.
In this line of research, I will present some of our recent works that estimate the complete 3D information either leveraging 3D data with lightweight 2D backbones, or using monocular 2D images. Beyond the visible scene parts, we will see that additional insights can boost estimation of the occluded areas.

La présentation sera donnée en anglais et les diapos seront en anglais.

Colloque REPARTI 2022 : vendredi 13 mai 2022, 8h45 – 15h15, sur Zoom*

Colloque REPARTI 2022 : vendredi 13 mai 2022, 8h45 – 15h15, sur Zoom* dans le cadre du congrès de l’Acfas.

Trois présentations keynote, chacune suivie d’une série de présentations brèves, qui sont toutes offertes par les chercheurs et les étudiants des institutions membres de REPARTI, et vous permettront d’en apprendre plus sur les projets de recherche et les initiatives menés par les membres de REPARTI. Voici le programme détaillé qui donne les titres de toutes les présentations :

Programme du Colloque REPARTI 2022

*Pour obtenir le lien d’accès pour la rencontre Zoom, veuillez SVP vous rendre sur le site https://www.acfas.ca/ et vous connecter à votre compte utilisateur lié à votre inscription au congrès de l’Acfas. Rendez-vous ensuite sur la page web du Colloque #205 et cliquez sur “Accéder à la plateforme”.

Webinaire CeRVIM : Geneviève Le Houx, 6 mai 2022

Webinaire CeRVIM : Initiation à la classification de nuages de points

Geneviève Le Houx
Laboratoire LVSN
Dép. de génie électrique et de génie informatique, Université Laval

6 mai 2022, 11h

Résumé
Ce projet, réalisé dans le cadre du cours GEL-7065 – Lectures dirigées en génie électrique III, porte sur la classification de nuage de points. Les nuages de points proviennent de la base de données « RGB-D Object Dataset » disponible sur le web. Ces données contiennent de l’information sur la position ainsi que sur la couleur de chaque point. Le webinaire présentera les différentes étapes pour effectuer la classification des nuages de points: le prétraitement des données, l’extraction de descripteurs ainsi que l’application de l’apprentissage automatique à des fins de classification.

La présentation sera donnée en français et les diapos seront en français.

Pour obtenir le lien d’accès internet pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Webinaire CeRVIM : Simon-Pierre Deschênes, 29 avril 2022

Webinaire CeRVIM : Lidar Scan Registration Robust to Extreme Motions

Simon-Pierre Deschênes
Norlab (Northern Robotics Laboratory)
Dép. d’informatique et de génie logiciel, Université Laval

29 avril 2022, 13h

Résumé
Simultaneous Localization And Mapping (SLAM) algorithms based on point cloud registration have proven effective in mobile robotics over the last decades. However, they are susceptible to failure when a robot sustains extreme velocities and accelerations. For example, this type of motion can take place after a collision, causing lidar scans to be heavily skewed. While point cloud de-skewing methods have been explored in the past to increase localization and mapping accuracy, these methods still rely on highly accurate odometry systems or ideal navigation conditions. In this presentation, a new point cloud registration algorithm taking into account the uncertainty left after de-skewing a point cloud will be presented and its performance in a SLAM algorithm will be analyzed.

La présentation sera donnée en anglais et les diapos seront en anglais.

Pour obtenir le lien d’accès internet pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Webinaire CeRVIM : Isaac Neri Gomez Sarmiento, 22 avril 2022

Webinaire CeRVIM : EMT to CT scan image registration of implants used in HDR brachytherapy

Isaac Neri Gomez Sarmiento
Laboratoire LVSN
Dép. de génie électrique et de génie informatique
Université Laval, et
Centre Intégré de Cancérologie – CHU de Québec – Université Laval

22 avril 2022, 11h

Résumé
High dose radiation (HDR) brachytherapy is an internal radiotherapy modality used for local cancer treatment that uses a single HDR seed, that travels inside a patient up to the cancer tumor by means of implants (catheters, needles, applicators). The success of this type of treatment is in part related to the accurate localization of the implants inside the patient by means of 3D medical imaging. 3D coordinates are used for optimizing the delivered dose to the tumor, while sparing surrounding healthy tissues. Currently in clinics, these coordinates can be identified manually or automatically from the 3D medical images but there can be errors when implants overlap, there is not sufficient contrast to identify them or in the case of CT scan, the slice thickness is too high. The goal of this project is to accurately reconstruct these implants with the help of an electromagnetic tracking (EMT) technology and align them in a 3D medical image reference frame (CT scan), using rigid transformation algorithms such as Iterative Closest Point (ICP).

La présentation sera donnée en anglais et les diapos seront en anglais.

Pour obtenir le lien d’accès internet pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Webinaire CeRVIM : Félix-Antoine Demers, 8 avril 2022

Webinaire CeRVIM : Évaluation en temps réel de la qualité d’un scan 3D du corps humain

Félix-Antoine Demers
Laboratoire LVSN
Dép. de génie électrique et de génie informatique
Université Laval

8 avril 2022, 11h

Résumé

De plus en plus, la numérisation 3D est utilisée dans une variété de domaines, notamment dans le secteur de la fabrication de prothèses. Or, il est souvent difficile pour les utilisateurs d’évaluer la qualité de leur numérisation durant la prise de mesures puisqu’ils ne sont pas spécialisés dans le domaine de la vision artificielle.

L’objectif de ce projet de recherche sera de fournir aux utilisateurs de numérisation 3D une rétroaction en temps réel sur la qualité de leurs mesures en vue de produire un meilleur modèle 3D de la partie du corps étant numérisée.

En utilisant des champs vectoriels comme structure volumétrique, il est possible, à partir de la matrice de covariance présente dans chaque voxel, d’évaluer la variation de surface en ce point. D’autres descripteurs locaux, notamment les normales à chaque point des voxels, permettent d’évaluer la qualité de la numérisation.

L’ensemble de ces calculs peuvent être effectués en temps réel. Ainsi, plusieurs métriques seront utilisées afin de déterminer un système de pointage qui servira de référence pour l’utilisateur pendant qu’il fait la numérisation 3D d’une partie du corps humain.

La présentation sera donnée en français et les diapos seront en français.

Pour obtenir le lien d’accès pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca

Webinaire CeRVIM : William Bonilla, 18 mars 2022

Webinaire CeRVIM : Mesure de la douleur chez la souris à l’aide de l’IA

William Bonilla
Laboratoire LVSN
Dép. de génie électrique et de génie informatique
Université Laval

18 mars 2022, 11h

Résumé
L’utilisation d’animaux en recherche est un privilège et un moyen de dernier recours. C’est pourquoi, les chercheurs doivent s’assurer du bien-être des sujets utilisés en tout temps. Un moyen d’assurer leur bien-être est de mesurer leur niveau de douleur à l’aide de leur expression faciale. Cette méthodologie est utilisée pour les souris en laboratoire et elle s’appelle le Mouse Grimace Scale (MGS). Ce projet de recherche vise à automatiser ce processus à l’aide de l’apprentissage automatique. La présentation définira les outils utilisés et décrira comment les défis rencontrés ont été surmontés.

La présentation sera donnée en français et les diapos seront en français.

Pour obtenir le lien d’accès pour la rencontre Zoom, SVP contacter :
Annette.Schwerdtfeger@gel.ulaval.ca